Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Sci Total Environ ; 924: 171435, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38438042

RESUMO

The harmful effects of microplastics (MPs) pollution in the soil ecosystem have drawn global attention in recent years. This paper critically reviews the effects of MPs on soil microbial diversity and functions in relation to nutrients and carbon cycling. Reports suggested that both plastisphere (MP-microbe consortium) and MP-contaminated soils had distinct and lower microbial diversity than that of non-contaminated soils. Alteration in soil physicochemical properties and microbial interactions within the plastisphere facilitated the enrichment of plastic-degrading microorganisms, including those involved in carbon (C) and nutrient cycling. MPs conferred a significant increase in the relative abundance of soil nitrogen (N)-fixing and phosphorus (P)-solubilizing bacteria, while decreased the abundance of soil nitrifiers and ammonia oxidisers. Depending on soil types, MPs increased bioavailable N and P contents and nitrous oxide emission in some instances. Furthermore, MPs regulated soil microbial functional activities owing to the combined toxicity of organic and inorganic contaminants derived from MPs and contaminants frequently encountered in the soil environment. However, a thorough understanding of the interactions among soil microorganisms, MPs and other contaminants still needs to develop. Since currently available reports are mostly based on short-term laboratory experiments, field investigations are needed to assess the long-term impact of MPs (at environmentally relevant concentration) on soil microorganisms and their functions under different soil types and agro-climatic conditions.


Assuntos
Microplásticos , Plásticos , Ecossistema , Carbono , Nutrientes , Solo , Microbiologia do Solo
2.
J Environ Manage ; 355: 120565, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38461637

RESUMO

Raw liquid anaerobic digestate was synthesised into nutrient-dense solid digestates via acidification and evaporation. Acidification retained ammonium in the digestate whilst also donating the anion to free ammonium to form an ammonium salt. Digestate was treated with the addition of sulphuric, nitric, and phosphoric acid resulting in the formation of ammonium sulphate, ammonium nitrate and ammonium phosphate, respectively then evaporated into a solid fertiliser product. FTIR, XRD and SEM-EDS collectively confirm that the addition of acids completely converted the free ammonium in the raw digestate into their respective ammonium salt counterparts. Compounds of potassium chloride, silicon dioxide, calcium carbonate, magnesium ammonium phosphate, sodium nitrate, and sodium chloride were identified in all solid digestate samples. Plant growth and grain yield was higher in urea ammonium nitrate, raw liquid digestate and acidified digestate products compared to control and unacidified solid digestate. Urea ammonium nitrate and ammonium nitrate solid digestate had the highest dry shoot, likely due to the high available nitrogen found in both fertilisers. Overall, acidification and evaporation of liquid digestate can efficiently transform it into a valuable solid fertiliser with a high nutrient density. This process not only has the potential to mitigate handling and storage constraints of low nutrient density digestate in anaerobic digestion facilities but also offers a sustainable alternative to conventional fertilisers.


Assuntos
Compostos de Amônio , Nitratos , Eliminação de Resíduos , Ureia/análogos & derivados , Resíduos , Alimentos , Fertilizantes , 60659 , Anaerobiose , Eliminação de Resíduos/métodos , Nitrogênio/análise
3.
Bioresour Technol ; 390: 129869, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37844804

RESUMO

The study synthesised the raw liquid fraction of digestate into a nutrient rich solid digestate through acidification whilst preventing nitrogen loss through ammonium volatilisation during evaporation. To stabilise ammonium in the digestate, it was acidified with sulphuric, nitric, and phosphoric acid to produce solid digestate with ammonium sulphate, ammonium nitrate and ammonium phosphate, respectively. These treatments were compared against urea ammonium nitrate, raw digestate, and unacidified solid digestate. To evaluate the effect of these transformed digestate products in soil, a plant growth experiment (Kikuyu; Cenchrus clandestinus) was conducted, and characterised, plant growth, soil chemistry, and rhizosphere bacterial communities. Plant growth was enhanced by all digestate treatments compared to control and urea ammonium nitrate. Ammonium phosphate solid digestate plant growth was significantly higher than all other acidified treatments due to the high P content. Moreover, digestate-amended soil had elevated Proteobacteria and putative denitrification genes.


Assuntos
Compostos de Amônio , Eliminação de Resíduos , Alimentos , Anaerobiose , Solo/química , Nitrogênio/química , Nutrientes , Ureia
4.
Sci Total Environ ; 904: 166649, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37660815

RESUMO

Micro- and nano-plastics (MNPs) have received considerable attention over the past 10 years due to their environmental prevalence and potential toxic effects. With the increase in global plastic production and disposal, MNP pollution has become a topic of emerging concern. In this review, we describe MNPs in the atmospheric environment, and potential toxicological effects of exposure to MNPs. Studies have reported the occurrence of MNPs in outdoor and indoor air at concentrations ranging from 0.0065 items m-3 to 1583 items m-3. Findings have identified plastic fragments, fibers, and films in sizes predominantly <1000 µm with polyamide (PA), polyester (PES), polyethylene terephthalate (PET), polypropylene (PP), rayon, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), polyacrylonitrile (PAN), and ethyl vinyl acetate (EVA) as the major compounds. Exposure through indoor air and dust is an important pathway for humans. Airborne MNPs pose health risks to plants, animals, and humans. Atmospheric MNPs can enter organism bodies via inhalation and subsequent deposition in the lungs, which triggers inflammation and other adverse health effects. MNPs could be eliminated through source reduction, policy/regulation, environmental awareness and education, biodegradable materials, bioremediation, and efficient air-filtration systems. To achieve a sustainable society, it is crucial to implement effective strategies for reducing the usage of single-use plastics (SUPs). Further, governments play a pivotal role in addressing the pressing issue of MNPs pollution and must establish viable solutions to tackle this significant challenge.


Assuntos
Microplásticos , Plásticos , Humanos , Animais , Plásticos/toxicidade , Poluição Ambiental , Atmosfera , Comportamento de Redução do Risco
5.
Environ Pollut ; 337: 122637, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37769707

RESUMO

Sorption and oxidation are two potential pathways for the decontamination of trivalent antimony (Sb(III))-bearing water, using iron (Fe)-modified biochar (FeBC). Here we investigated the sorption and oxidation behavior of FeBC for Sb(III) in aqueous solutions. Results revealed that Sb(III) removal by FeBC was significantly improved showing the maximum Sb(III) sorption (64.0 mg g-1). Density functional theory (DFT) calculations indicated that magnetite (Fe3O4) in FeBC offered a sorption energy of -0.22 eV, which is 5 times that of non-modified biochar. With the addition of peroxymonosulfate (PMS), the sorption of Sb(III) on FeBC was 7 times higher than that on BC, indicating the sorption capacity of FeBC for Sb(III) could be substantially increased by adding oxidizing agents. Electrochemical analysis showed that Fe modification imparted FeBC higher electron-donating capacity than that of BC (0.045 v. s. 0.023 mmol e- (g biochar)-1), which might be the reason for the strong Sb(III) oxidation (63.6%) on the surface of FeBC. This study provides new information that is key for the development of effective biochar-based composite materials for the removal of Sb(III) from drinking water and wastewater. The findings from this study have important implications for protecting human health and agriculture.


Assuntos
Ferro , Poluentes Químicos da Água , Humanos , Ferro/análise , Antimônio/análise , Elétrons , Adsorção , Carvão Vegetal , Água , Estresse Oxidativo , Poluentes Químicos da Água/análise
6.
Sci Total Environ ; 891: 164608, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37286002

RESUMO

The conversion of organic matter and P in the waste composting process affects the efficiency of the composted product. However, the addition of microbial inoculants may improve the conversion characteristics of organic matter and P. In this study, straw-decomposing microbial inoculant (SDMI) was added to investigate its effects on the organic matter stabilization and phosphorus activation during the composting of vegetable waste (VWs). Aliphatic carboxyl-containing compounds were degraded during composting, but the stability of the organic matter and P was improved. The addition of SDMI promoted the degradation of dissolved organic carbon by 81.7 % and improved P stability and thermal stability of organic matter. Hedley sequential P fractionation showed a decrease in the H2O-P proportion by >12 % and increased in the HCl-P proportion by >4 % by the end of composting. Stable forms of P, such as AlPO4 and iron-containing phosphate, were the main forms of P in the final compost. The results provide a basis for producing high-quality vegetable compost products and improving the reutilization potential of VWs.


Assuntos
Inoculantes Agrícolas , Compostagem , Compostagem/métodos , Fósforo/metabolismo , Verduras/metabolismo , Inoculantes Agrícolas/metabolismo , Solo
7.
J Environ Manage ; 342: 118191, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37210821

RESUMO

This paper aimed to highlight the succession of biochar addition for soil amendment and contaminants remediation during composting process. Biochar incorporated into the compost mixture promotes composting performance and enhances contaminants reduction. Co-composting with biochar for soil biota has been demonstrated via modified soil biological community abundance and diversity. On the other hand, adverse alterations to soil properties were noted, which had a negative impact on the communication of microbe-to-plant interactions within the rhizosphere. As a result, these changes influenced the competition between soilborne pathogens and beneficial soil microorganisms. Co-composting with biochar promoted the heavy metals (HMs) remediation efficiency in contaminated soils by around 66-95%. Notably, applying biochar during composting could improve nutrient retention and mitigate leaching. The adsorption of nutrients such as nitrogen and phosphorus compounds by biochar can be applied to manage environmental contamination and presents an excellent opportunity to enhance soil quality. Additionally, the various specific functional groups and large specific surface areas of biochar allow for excellent adsorption of persistent pollutants (e.g., pesticides, polychlorinated biphenyls (PCBs)) and emerging organic pollutants, such as microplastic, phthalate acid esters (PAEs) during co-composting. Finally, future perspectives, research gaps, and recommendations for further studies are highlighted, and potential opportunities are discussed.


Assuntos
Compostagem , Poluentes Ambientais , Poluentes do Solo , Solo , Plásticos , Poluentes do Solo/análise , Carvão Vegetal
8.
Water Res ; 238: 120006, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37121197

RESUMO

Microplastics and biochar, as particulate matter that is prevalent in the water environment, will inevitably encounter and interact with each other during environmental aging. The potential interaction of microplastics and biochar, and the associated impact on their environmental behavior remains largely unknown. In this study, we exposed microplastics and biochar concurrently to ultraviolet light to mimic the aging process, investigated the release and fluorescence characteristics of dissolved organic matter (DOM) in water, and analyzed the effects of co-existing microplastics and biochar on their sorption of organic contaminants. We demonstrate that early-stage interactions of microplastics and biochar could entangle to promote the release of DOM from biochar, while their long-term interactions after light irradiation resulted in the sorption of hydrophobic and small molecules of microbial byproduct-like DOM. Simultaneously, early-stage interactions of microplastics and biochar showed a promotion for sorption of organic contaminants with an increase of 5.3-17.7%. After aging, however, long-term interactions between microplastics and biochar made it no longer promote the sorption of organic contaminants due to the influence of heterogeneous aggregation. Our results provide new insights into the time-dependent interactions between microplastics and biochar and highlight the need to incorporate their interactions into future environmental risk assessments for microplastics in the water environment.


Assuntos
Microplásticos , Plásticos , Plásticos/química , Água , Carvão Vegetal/química , Matéria Orgânica Dissolvida
9.
Sci Total Environ ; 873: 162400, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36842585

RESUMO

Addition of organic amendments, such as manure and straw, to arable fields as a partial substitute for mineral phosphorus (P), are a sustainable practice in high-efficiency agricultural production. Different organic inputs may induce varied soil organic carbon (OC) stability and phoD harboring microbes, subsequently regulate P behavior, but the underlying mechanisms are poorly understood. A 11-year field experiment examined P forms by 31P-nuclear magnetic resonance (NMR), OC chemical composition by 13C NMR, and biologically-based P availability methods, phoD bacterial communities, and their co-occurrence in soils amended with chemical P fertilizer (CF), chemical P partly substituted by organic amendments including pig manure (CM), a mixture of pig manure and corn straw (CMS), and corn straw (CS), with equal P input in all treatments. Organic amendments significantly increased soil labile Pi (CaCl2-P, citrate-P, 2.91-3.26 and 1.16-1.32 times higher than CF) and Po (enzyme-P, diesters, 4.08-7.47 and 1.71-2.14 times higher than CF) contents and phosphatase activities, while significantly decreased aromaticity (AI) and recalcitrance indexes (RI) of soil C, compared with CF. The keystone genera in manured soils (Alienimomas and Streptomyces) and straw-applied soils (Janthinobacterium and Caulobacter) were significantly correlated with soil enzyme-P, microbial biomass P (MBP), diesters, and citrate-P. Soil AI and RI were significantly correlated with the phoD keystone and soil P species. It suggested that the keystone was impacted by soil OC stability and play a role in regulating P redistribution in amended soils. This study highlights how manure and straw incorporation altered soil OC stability, shaped the phoD harboring community, and enhanced soil P biological processes promoted by the keystone taxa. The partial substitution of mineral P by mixture of manure and straw is effectively promote soil P availability and beneficial for environmental sustainability.


Assuntos
Carbono , Solo , Suínos , Animais , Solo/química , Verduras , Fósforo , Esterco , Bactérias , Fertilizantes/análise , Microbiologia do Solo
10.
Environ Pollut ; 313: 120152, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36100120

RESUMO

Plant-derived saponins are bioactive surfactant compounds that can solubilize organic pollutants in environmental matrices, thereby facilitating pollutant remediation. Externally applied saponin has potential to enhance total petroleum hydrocarbon (TPH) biodegradation in the root zone (rhizosphere) of wild plants, but the associated mechanisms are not well understood. For the first time, this study evaluated a triterpenoid saponin (from red ash leaves, Alphitonia excelsa) in comparison to a synthetic surfactant (Triton X-100) for their effects on plant growth and biodegradation of TPH in the rhizosphere of two native wild species (a grass, Chloris truncata, and a shrub, Hakea prostrata). The addition of Triton X-100 at the highest level (1000 mg/kg) in the polluted soil significantly hindered the plant growth (reduced plant biomass and photosynthesis) and associated rhizosphere microbial activity in both the studied plants. Therefore, TPH removal in the rhizosphere of both plant species treated with the synthetic surfactant was not enhanced (at the lower level, 500 mg/kg soil) and even slightly decreased (at the highest level) compared to that in the surfactant-free (control) treatment. By contrast, TPH removal was significantly increased with saponin application (up to 60% in C. truncata at 1000 mg/kg due to enhanced plant growth and associated rhizosphere microbial activity). No significant difference was observed between the two saponin application levels. Dehydrogenase activity positively correlated with TPH removal (p < 0.001) and thus this parameter could be used as an indicator to predict the rhizoremediation efficiency. This work indicates that saponin-amended rhizoremediation could be an environmentally friendly and effective biological approach to remediate TPH-polluted soils. It was clear that the enhanced plant growth and rhizosphere microbial activity played a crucial role in TPH rhizoremediation efficiency. The saponin-induced molecular processes that promoted plant growth and soil microbial activity in the rhizosphere warrant further studies.


Assuntos
Petróleo , Saponinas , Poluentes do Solo , Triterpenos , Biodegradação Ambiental , Hidrocarbonetos/metabolismo , Octoxinol , Oxirredutases , Petróleo/metabolismo , Poaceae , Rizosfera , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise
11.
J Environ Manage ; 318: 115519, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35716555

RESUMO

Globally, the valorisation of food waste into digestate through the process of anaerobic digestion is becoming increasingly popular. As a result, a large amount of food-waste digestate will need to be properly utilised. The utilisation of anaerobic digestion for fertiliser and alternative uses is essential to obtain a circular bioeconomy. The review aims to examine the environmental management of food-waste digestate, the value of digestate as a fertiliser and soil conditioner, and the emerging uses and improvements for post-anaerobic digestion reuse of digestate. Odour emissions, contaminants in food waste, emission and leaching of nutrients into the environment, and the regulations, policies, and voluntary initiatives of anaerobic digestion are evaluated in the review. Food-waste digestate can provide essential nutrients, carbon, and bio-stimulants to soils and increase yield. Recently, promising research has shown that digestates can be used in hydroponic systems and potentially replace the use of synthetic fertilisers. The integration of anaerobic digestion with emerging uses, such as extraction of value-added products, algae cultivation, biochar and hydrochar production, can further reduce inhibitory sources of digestate and provide additional economic opportunities for businesses. Moreover, the end-product digestate from these technologies can also be more suitable for use in soil application and hydroponic use.


Assuntos
Fertilizantes , Eliminação de Resíduos , Anaerobiose , Alimentos , Solo
12.
Environ Pollut ; 307: 119466, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35577261

RESUMO

Leaching of herbicides in cropping soils not only impacts the groundwater sources but also reduces their effect in controlling weeds. Leaching studies were carried out in two cropping soils and two forestry biowaste media, wood pulp and sawdust with two herbicides, atrazine and bromacil in a packed lysimeter with simulated rainfall. The hypothesis was that high organic matter forestry biowaste soil amendments reduce the leaching of herbicides through the soil profile. Results from the experimental setups varied due to the impact of the simulated rainfall on the surface structure of the media. Organic carbon content, pH and structure of the media were all factors which affected the leaching of the two herbicides. The hypothesis was true for wood pulp, but for sawdust, organic matter content had less bearing on the leaching of the herbicides than other over-riding factors, such as pH, that were media specific. In sawdust, its large particle size and related pore volume allowed preferential flow of herbicides. Overall, the data indicated that both forestry biowastes were retentive to herbicide leaching, but the effect was more pronounced with wood pulp than sawdust.


Assuntos
Atrazina , Herbicidas , Poluentes do Solo , Adsorção , Agricultura Florestal , Herbicidas/análise , Solo/química , Poluentes do Solo/análise
13.
Sci Total Environ ; 830: 154753, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35339555

RESUMO

Nitrous oxide and ammonia emissions from farmland need to be abated as they directly or indirectly affect climate warming and crop yield. We conducted a two-year field experiment to investigate the effect of biochar applied at two rates (no biochar application vs. biochar applied at 10 t ha-1) on gaseous nitrogen (N) losses (N2O emissions and NH3 volatilization), plant N uptake, residual soil mineral N, and peanut (Arachis hypogaea L.) yield under three irrigation regimes: furrow irrigation (FI), drip irrigation (DI), and mulched drip irrigation (MDI). We found that MDI reduced residual (post-harvest) soil mineral N, cumulative N2O emissions, and yield-scaled N2O emissions as compared to FI. Biochar application increased residual soil NO3--N and decreased yield-scaled N2O emissions as compared with the control without biochar application. Under the three irrigation regimes, biochar application decreased cumulative NH3 volatilization and increased plant N uptake and yield compared with the control. Biochar application improved the sustainability of peanut production and could be used to alleviate the environmental damage associated with gaseous N emissions. Where possible, biochar application under MDI in peanut fields is recommended as a management strategy to minimize gaseous N losses.


Assuntos
Arachis , Nitrogênio , Agricultura , Carvão Vegetal , Fertilizantes/análise , Gases , Óxido Nitroso/análise , Solo
14.
Bioresour Technol ; 351: 126976, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35278620

RESUMO

The combined effects of microbial inoculants (MI) and magnesium ammonium phosphate (MAP; struvite) on organic matter (OM) biodegradation and nutrients stabilization during biowaste composting have not yet been investigated. Therefore, the effects of MI and MAP on OM stability and P species during swine manure composting were investigated using geochemical and spectroscopic techniques. MI promoted the degradation of carbohydrates and aliphatic compounds, which improved the degree of OM mineralization and humification. MI and MAP promoted the redistribution of P fractions and species during composting. After composting, the portion of water-soluble P decreased from 50.0% to 23.0%, while the portion of HCl-P increased from 18.5% to 33.5%, which mean that MI and MAP can stabilize P and mitigate its potential loss during composting. These findings indicate that MI can be recommended for enhancing OM biodegradation and stabilization of P during biowastes composting, as a novel trial for the biological waste treatment.


Assuntos
Inoculantes Agrícolas , Compostagem , Animais , Esterco , Fósforo , Solo , Estruvita , Suínos
15.
Environ Pollut ; 300: 118860, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35114306

RESUMO

Currently, 1.3 billion tonnes of food are thrown away each year, most of which are incinerated or landfilled causing large environmental, social, and economic issues. Therefore, the utilisation of food waste as biofertilisers, such as composts and digestates, is a solution to reduce the problems created by incineration and landfilling whilst simultaneously amending soils. The improper disposal of food wastes and bulking materials can contribute to high levels of contaminants within the end-product. Moreover, the food waste and bulking materials, themselves, may contain trace amounts of contaminants. These contaminants tend to have long half-lives, are easily mobile within soil and plants, can accumulate within the food supply chain, and have moderate to high levels of toxicity. This review aims to examine the current and emerging contaminants of high concern that impact the quality of food-waste fertilisers. The paper presents the volume of current and emerging contaminants of plastics, other physical (particulate) contaminants, heavy metals, pesticides, polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), per- and polyfluoroalkyl substances (PFAS), and pathogens within food-waste composts and digestates. Due to the large extent of organic chemical contaminants and the unknown level of toxicity and persistence, the risk assessment of organic chemical contaminants in the food-supply chain remains largely unknown. This study has presented available data from literature of various contaminants found in food waste, and composts and digestates derived from food waste, and evaluated the data with current regulations globally. Overall, to reduce contaminants in composts and digestates, more studies are required on the implementation of proper disposal separation, effective composting and digestion practices, increased screening of physical contaminants, development of compostable plastics, and increased regulatory policies on emerging, problematic contaminants. Moreover, examination of emerging contaminants in food-waste composts and digestates is needed to ensure food security and reduce future human-health risks.


Assuntos
Compostagem , Eliminação de Resíduos , Gerenciamento de Resíduos , Alimentos , Humanos , Solo
16.
Sci Total Environ ; 824: 153828, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35157873

RESUMO

Due to the increasing concerns on global ecosystems and human health, the environmental risks posed by microplastics (MPs) and nanoplastics (NPs) have become an important topic of research. Their ecological impacts on various faunal species have been extensively researched and reviewed. However, the majority of those studies perceive these micro(nano)-plastics (MNPs) as a single entity rather than a collective term for a group of chemically distinct polymeric particulates. Each of the plastic polymers can possess unique physical and chemical behavior, which, in turn, can determine the possible environmental impacts. Furthermore, many studies explore the adsorption, absorption, and release of other environmental pollutants by MNPs. But only a handful of them explore the leaching of additives possessed by these polymers. Data on the environmental behavior and toxicity of individual additives associated with different polymer particulates are scarce. Knowledge about the leachability and ecotoxicity of the additives associated with environmental MNPs (unlike large plastic particles) remains limited. The ecological impacts of different MNPs together with their additives and the basis of their toxicity have not been explored yet. The present review systematically explores the potential implications of environmentally predominant polymers and their associated additives and discusses their physicochemical characteristics. The review ultimately aims to provide novel insights on what components precisely make MNPs hazardous to the fauna. The paper also discusses the major challenges proposed in the available literature along with recommendations for future research to throw light on possible solutions to overcome the hazards of MNPs.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Poeira , Ecossistema , Poluentes Ambientais/toxicidade , Humanos , Microplásticos/toxicidade , Plásticos/toxicidade , Polímeros , Poluentes Químicos da Água/análise
17.
Sci Total Environ ; 815: 152922, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34999075

RESUMO

Soil contamination with toxic metals and metalloids has become a major threat to global food security. Among various immobilization agents that can stabilize toxic metal(loid)s effectively, biochar is promising due to its ability to restore soil health. Yet the aging characteristics of biochar following its amendment in soil remain poorly explored. Therefore, this study used standard biochars to depict their aging effects on remediation of metal(loid)-contaminated soil. A total of 2304 observations were made, including 6 biochar feedstocks (rice husk, soft wood, oilseed rape straw, miscanthus straw, sewage sludge and wheat straw), 2 pyrolysis temperatures (550 °C, 700 °C), 8 metal(loid)s (Mn, Ni, Cu, Zn, As, Cd, Sb, Pb), 4 aging methods (natural aging, freeze-thaw cycling, wet-dry cycling, chemical oxidation with H2O2), and 6 sampling intervals. Sewage sludge biochars exhibited the highest resistance to both artificial and natural aging, which may be related to the abundant oxygen-containing functional groups that favor metal complexation, and poorly-developed pore structures that limit the access of natural aging forces. A distinct relationship between ash and temperature was observed, where for high-ash biochars, an increase in pyrolysis temperature indicated lower resistance to aging, while for low-ash biochars, elevated pyrolysis temperature led to higher resistance. The aging behaviors of Cu and Sb were quite similar, which were both highly susceptible to chemical oxidation-induced dissolved organic carbon (DOC) release. Wet-dry cycling and freeze-thaw cycling revealed aging patterns that were similar to those of naturally aged soils as confirmed by cluster analysis. Lab aging data were then compared with existing biochar field aging results. Contrasting long-term immobilization performances were found in different studies, which were attributed to various causes associated with both biochar property and climate. The results of this study provide fresh insights into the long-term risks in the management of metal(loid)-contaminated agricultural soils.


Assuntos
Poluentes do Solo , Solo , Carvão Vegetal , Peróxido de Hidrogênio , Poluentes do Solo/análise
18.
Sci Total Environ ; 822: 153461, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35093379

RESUMO

Fast weathering of parent materials and rapid mineralization of organic matter because of prevalent climatic conditions, and subsequent development of acidity and loss/exhaustion of nutrient elements due to intensive agricultural practices have resulted in the degradation of soil fertility and productivity in the vast tropical areas of the world. There is an urgent need for rejuvenation of weathered tropical soils to improve crop productivity and sustainability. For this purpose, biochar has been found to be more effective than other organic soil amendments due to biochar's stability in soil, and thus can extend the benefits over long duration. This review synthesizes information concerning the present status of biochar application in highly weathered tropical soils highlighting promising application strategies for improving resource use efficiency in terms of economic feasibility. In this respect, biochar has been found to improve crop productivity and soil quality consistently through liming and fertilization effects in low pH and infertile soils under low-input conditions typical of weathered tropical soils. This paper identifies several advance strategies that can maximize the effectiveness of biochar application in weathered tropical soils. However, strategies for the reduction of costs of biochar production and application to increase the material's use efficiency need future development. At the same time, policy decision by linking economic benefits with social and environmental issues is necessary for successful implementation of biochar technology in weathered tropical soils. This review recommends that advanced biochar strategies hold potential for sustaining soil quality and agricultural productivity in tropical soils.


Assuntos
Poluentes do Solo , Solo , Agricultura/métodos , Carvão Vegetal
19.
J Hazard Mater ; 425: 127906, 2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-34891020

RESUMO

Improving the recovery of organic matter and phosphorus (P) from hazardous biowastes such as swine manure using acidic substrates (ASs) in conjunction with aerobic composting is of great interest. This work aimed to investigate the effects of ASs on the humification and/or P migration as well as on microbial succession during the swine manure composting, employing multivariate and multiscale approaches. Adding ASs, derived from wood vinegar and humic acid, increased the degree of humification and thermal stability of the compost. The 31P nuclear magnetic resonance spectroscopy and X-ray absorption near-edge structure analyses demonstrated compost P was in the form of struvite crystals, Ca/Al-P phases, and Poly-P (all inorganic P species) as well as inositol hexakisphosphate and Mono-P (organophosphorus species). However, the efficiency of P recovery could be improved by generating more struvite by adding the ASs. The flows among nutrient pools resulted from the diversity in the dominant microbial communities in different composting phases after introducing the ASs and appearance of Bacillus spp. in all phases. These results demonstrate the potential value of ASs for regulating and/or improving nutrients flow during the composting of hazardous biowastes for producing higher quality compost, which may maximize their beneficial benefits and applications.


Assuntos
Compostagem , Animais , Substâncias Húmicas , Esterco , Fósforo , Solo , Suínos
20.
Sci Total Environ ; 806(Pt 1): 150501, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34583080

RESUMO

Aging is an inevitable natural process, leading to faded performances of soil amendments. Understanding long-term aging features is crucial for the risk management of contaminated soil. In this study, a novel quantitative aging method, namely, the "soil coin" method, was developed, which can simulate the effects of natural aging on metal(loid) immobilization performances. To better depict the aging features, two models on the basis of conditional probability-induced failure were developed. To effectively immobilize soil arsenic (As) and antimony (Sb), magnesium (Mg) and iron (Fe) oxides were simultaneously introduced to either fresh or pre-oxidized biochar via a facile method. Although post-application aging is harmful, pre-aging (i.e., pre-oxidation using H2O2) in turn served as an effective means to introduce more metal oxides, thereby rendering better short-term and long-term effectiveness for metalloid immobilization. Experimental and modeling approaches suggested that precipitation accounted for long-term immobilization, while a constant aging rate is the key feature for a promising soil amendment. It is suggested that to further calibrate this method and better understand the immobilization performances in the long run, more evidence from the field is needed.


Assuntos
Arsênio , Metaloides , Poluentes do Solo , Arsênio/análise , Carvão Vegetal , Peróxido de Hidrogênio , Solo , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...